УДК 53.047:57(075.8)

АКУСТОМЕТРИЯ РУБЦОВЫХ ПЕРЕРОЖДЕНИЙ

Козырь Л.В., Фаустова Е.Е., Федорова В.Н., Биганов А.В., Михалева В.А., Жакинбаев А.Ю.

РНИМУ- Российский научно-исследовательский медицинский университет им. Н.И.Пирогова, Россия, Москва, e-mail fedvn46@yandex.ru

Аннотапия

Рассматривается применение акустического метода при исследовании рубцов различных типов. Представлены характеристики для оценки механических свойств кожи при рубцевании (рубцы послеожоговые, рубцы в челюстно-лицевой хирургии). Предложен объективный неинвазивный акустометрический метод дифференциальной диагностики рубцов и оценки эффективности их лечения различными способами.

Ключевые слова: скорость распространения поверхностной волны, акустический метод, нормометрические, гипертрофические, келоидные рубцы.

ACOUSTOMETRY OF SCARRELS

Kozyr L.V., Faustova E.E., Fedorova V.N., Biganov A.V., Mikhaleva V.A., Zhakinbaev A.

RNIMU - Russian Research Medical University named after N.I. Pirogova, Russia, Moscow, e-mail fedvn46@yandex.ru

Annotation

The application of the acoustic method in the study of scars of various types is considered. Characteristics for assessing the mechanical properties of the skin during scarring (post-burn scars, scars in maxillofacial surgery) are presented. An objective non-invasive acoustometric method for differential diagnosis of scars and assessment of the effectiveness of their treatment by various methods is proposed.

Key words: speed of propagation of surface waves, acoustic method, normometric, hypertrophic, keloid scars.

Механические свойства биологических тканей являются очень информативными. В последние годы для изучения механических свойств тканей в медицинскую практику стал активно внедряться акустический метод, возникло направление - биоакустометрия [9]. В акустическом методе реализуются сдвиговые поверхностные волны низкой частоты, [11,7,8]. Скорость распространения этих волн (возмущений) определяется структурной организацией надмолекулярного уровня, которая изменяется как при развитии патологического процесса, так и в процессе его лечения. Эти изменения объективно отражаются в изменении величины скорости распространения волны. Это позволяет неинвазивно их обнаруживать и следить за динамикой физиологических изменений.

Акустический метод применяется во многих направлениях медицины: дерматологии – объективная диагностика стадий дерматозов оценка эффективности лечения; хирургия – оценка течения раневого процесса, оценка эффективности пересадки кожного лоскута;

косметология — определение типа кожи, оценка эффективности действия косметологических процедур и косметических средств, оценка течения послеоперационного периода при использования различных физиопроцедур; челюстно-лицевая хирургия — объективная оценка ран разной этиологии; маммопластика — оценка кожи молочной железы для прогнозирования тактики хирургического вмешательства.

Материалы и методы.

Объектом исследования в данной работе является нормальная кожа и кожа с рубцовыми перерождениями. Формирование рубцов различных типов исследовалось на примере ожоговых и челюстно-лицевых ран.

Акустометрические исследования проводились с использованием акустического анализатора кожи (прибор ACA [11]) и акустического медицинского диагностического прибора (АМДП), [7,8], позволяющих измерять скорость распространения поверхностных волн на частотах (5-6) к Γ ц.

Измерялась скорость в нормальной коже (Vн) на расстоянии 2 см от рубца, либо на контрлатеральной области тела и скорость в рубцовой ткани (Vп). По измеренным значениям определялся параметр $Z = (V\pi/V + 1)100\%$.

Лечение рубцов имеет определенные трудности, чем свидетельствует 0 многочисленность применяемых методик. Используются: хирургическое иссечение, ферментотерапия, гормонотерапия, рентгенотерапия, которые всегда дают положительный результат. При всех методах лечения необходимо знать тип рубцовой ткани [4].

Классическая диагностика типа рубцовой ткани

Рубцы на коже — продукт регенерации, появляющийся при заживлении на месте повреждения слоев кожи: эпидермиса, дермы, и/или гиподермы. Рубцы могут быть как результатом перенесенных заболеваний кожи (ветряная оспа, угри, пиодермия и др.), так и следствием осложнений после травм, ожогов, хирургических вмешательств.****

В повседневной врачебной практике диагностика типа рубца основана на визуальной и пальпаторной оценке следующих его признаков: размер, интенсивность, окраска, плотность (на ощупь), возвышение над уровнем окружающей визуально нормальной кожи, рельеф поверхности, чувствительность. Указанные выше признаки приведены в табл. 1.

Таблица 1. Признаки для различных рубцов

Клинический	Четкое проявление признака (%) для различных рубцов		
признак	Атрофический	Гипертрофический	Келоидный
взятие в складку	легко берется в	берется в складку	не берется в складку
	складку, 100%	90%	100%

возвышение над	нет, 100%	возвышается на	возвышается более		
кожей		1-2 мм, 90%	чем на 5 мм,70%		
плотность	нет, 100%	средняя, 100%	грубая,100%		
цвет рубцовой ткани	белый,100%	серо-коричневый, 90%	розовато-коричневый, 90%		
цвет рубцовой ткани	белый,100%	серо-коричневый, 90%	розовато-коричневый, 90%		
цвет нормальной кожи	белая, 100%	белая, 40%	смуглая 69%		
наличие зуда	нет, 100%	эпизодически, 60%	постоянно, 80%		
шелушение	нет, 100%	среднее, 50%	сильное, 70%		
отечность	нет, 100 %	да, 10%	да, 60 %		
бугристость	нет, 100%	средняя, 100%	грубая. 100 %		
рост	нет, 100 %	да, 10 %	да, 40%		
Гистологические признаки					
толщина		меньше	больше		
эпидермиса					
блестящий слой		менее определен	более определен		
толщина коллагена		меньше	больше		
упорядоченность		имеет место	почти отсутствует		
волокон					
бифильтрация		менее выражена	более выражена		
фибробластов					

Сложность правильной диагностики типа рубца объясняется как клиническим сходством между различными типами рубцов, так и тем, что их особенности не всегда выражены визуально. С указанными трудностями связан большой процент расхождения между клиническими и гистологическими диагнозами. Так, например, для келоидов диагнозы не совпадают в 75-80% случаев, а расхождения в случае гипертрофических рубцов составляют около 25% [1].

Совершенствование лечения и реабилитации больных с разными рубцами невозможно без своевременной и точной диагностики патологического типа рубцевания, так как от этого напрямую зависит вся тактика лечения.

В связи с этим, актуален поиск объективных, неинвазивных, информативно — значимых методов исследования, применяемых в широкой клинической практике. В последние годы для этих целей широко используется акустический метод. Этот метод широко применяется в различных областях медицины: кожная пластика - ранняя оценка качества приживления костного лоскута; дерматология - объективная оценка стадий дерматозов и оценка эффективности лечения; офтальмология — оценка механических прижизненных свойств роговицы, склеры, кожи век для прогнозирования близорукости; маммопластика - оценка механических свойств кожи молочной железы с целью выбора правильной тактики хирургического вмешательства; челюстно-лицевая хирургия — диферинциальная типов ран

Диагностики типов рубцов акустическим методом

Методика диагностирования типов рубцовой ткани изложена в работах [9, 5]. При диагностировании рубцов акустическим методом на выделенный участок кожи наносятся точки сканирования, рис. 1. Скорости Vп, измеренные в этих точках сопоставляются с нормой — Vн. В качестве нормы для каждого пациента были использованы значения скорости, измеренные у этого же пациента в интактной коже на симметричных участках или вблизи рубца. Диагностика типа рубцов производилась с учетом трех классических типов рубцов.

Послеожоговые рубцы

Работа основана на результатах исследования больных с послеожоговыми рубцами [9,5,6].

Рис. 1. Сканирование рубцовой области прибором АМДП [7, 8]

По гистограммам рассчитана эмпирическая плотность распределения V для разных типов рубцов, рис.2.

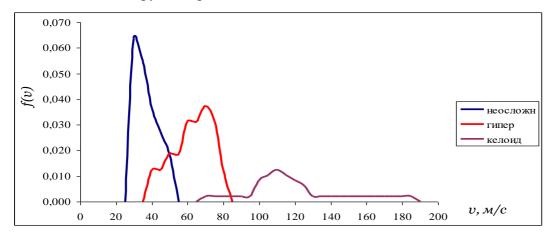


Рис. 2. Эмпирическая плотность распределения скорости V для рубцов различных типов.

На основании этих графиков можно проводить вероятностную оценку принадлежности рубца к тому или иному типу, что имеет большое клиническое значение.

Результаты выполненных исследований позволили сделать вывод о том, что акустический безразмерный параметр Z является диагностически значимым при определении *степени выраженности рубцового перерождения* кожи.

Для ожоговых рубцов параметр Z имеет следующие значения:

- если отличия между нормой и патологией Z = (9-16)%, то рубец нормотрофический;
- если отличия между нормой и патологией Z = (30-40)%, то рубец гипертрофический;
- если отличия между нормой и патологией Z = (98-128)%, то рубец келоидный. Определение типа послеожогового рубца подтверждено гистологическими исследованиями [5].

Послеоперационные рубцы в челюстно-лицевой хирургии

Работа основана на результатах исследования больных с гнойно-воспалительными ранами в области лица и шеи [3, 2]. У пациентов производилось обследование кожи в тех участках лица и шеи (подглазничная область, носогубная складка, поднижнечелюстная и под подбородочная области), в которых обычно осуществляется хирургический разрез при гнойно-воспалительных процессах челюстно-лицевой области.

Рис. 3 Акустическое сканирование в области рубца прибором ACA [11] перед снятием швов В области операционной раны после вскрытия гнойного очага сформировался нормотрофический рубец, были отмечены гипертрофический тип формирования рубца, был выявлен келоидный тип формирования рубца

Для этой группы пациентов параметр Z имеет следующие значения:

- при нормотрофическом рубеце Z = (10 28)%;
- при гипертрофическом рубце Z = (30 45)%;
- при келоидном рубце Z = (80 150)%. Тип рубца подтверждался клиническими методами.

Таким образом, изменения механических акустических показателей, регистрируемых в процессе формирования рубцовых изменений кожи, являются дополнительными объективными критериями оценки типа рубцов.

Литература

- 1. Белоусов А.Е. Рубцы и их коррекция. Очерки пластической хирургии. СПб. Командор-SPB, 2005. Т.1. С.128.
- 2. Гончарова А.В., Кравец В.И., Сивохина В.П., Биганов А.В. Акустометрия в области лица и шеи// Сборник трудов II Всероссийской научно-практической конференции «Актуальные проблемы физики и технологии в образовании, науке и производстве». Рязань, март. 2020. С. 80-82.
- 3. Кравец В.И., Федорова В.Н., Притыко А.Г. Анализ акустических свойств мягких тканей как метод функционального контроля состояния ран челюстно-лицевой области и шеи // Вестник российского государственного медицинского университета, №4, 2010, с. 33-37
- 4. Павлович В.А. Лечение и профилактика келоидных и гипертрофически рубцов в области лица и шеи: дисс. канд. мед. наук. М. 2010.
- 5. Соболева И.В. Обоснование тактики лечения детей с послеожоговыми рубцами кожи. М. дисс. канд. мед.наук. М. 2007.
- 6. Соболева И.В., Будкевич Л.И., Шурова Л.В., Федорова В.Н. Дифференциальнодиагностические критерии типа рубцовой ткани у детей с последствиями термической травмы//Детская хирургия. 2007. №5. с.30-34.
- 7. Фаустова Е.Е., Федорова В.Н., Куликов В.А. Способ неинвазивного измерения скорости распространения акустических колебаний в эластичной ткани. Патент RU 2362487 C2 от $27.07.2009~\rm r.$
- 8. Федорова В.Н Куликов В.А., Фаустова Е.Е., Фаустов Е.В. Датчик для акустического микросканирования мягких биологических тканей. Патент № 2594806. 27.07. 2016 г.
- 9. Федорова В.Н., Фаустова Е.Е. Акустическая биомеханика кожи и мягких тканей в объективной диагностике и оценке эффективности лечения. Монография. Изд. РАМН. 2018. С.200.
- 10. Шурова Л.В., Воздвиженский С.И., Принципы реабилитации в детской комбустиологии//Реабилитология. Сборник научных трудов (Ежегодное издание). М. 2004. с.162-164.
- 11. Sarvazyan A.P.et al., Method and device for acoustic testing of elasticity of biological tissues, United States Patent, N 4, 947851, 14. 08. 1990.