СИНТЕЗ И ОПРЕДЕЛЕНИЕ ТЕРМОДИНАМИЧЕСКИХ СВОЙСТВ МИНЕРАЛА ДОБРЕЕЛИТА. ПРИЛОЖЕНИЕ К АНАЛИЗУ УСЛОВИЙ ОБРАЗОВАНИЯ ЭНСТАТИТОВЫХ ХОНДРИТОВ.

Заболоцкая А.В., Осадчий Е.Г. Государственный университет «Дубна», г. Дубна, Россия

SYNTHESIS AND DETERMINATION OF THERMODYNAMIC PROPERTIES OF MINERAL DAUBRÉELITE. APPLICATION TO THE ANALYSIS OF FORMATION CONDITIONS OF ENSTATITE CHONDRITES.

Zabolotskaya A.V., Osadchiy E.G. State University of Dubna, Dubna, Russia

Теоретическое обоснование экспериментального метода

Метод электрохимической ячейки

Для термохимических расчётов с участием сульфидов необходимо определить стандартное состояние серы. Для этого разными исследователями выбирались разные модификации данного элемента: кристаллическая, жидкая и газообразная сера при 298.15К и давлении 1 атм или эти же формы при повышенных температурах и давлении 1 бар (10⁵ Па) атм. В качестве стандартного состояния для этого элемента в термохимических расчётах наиболее широко используются ромбическая модификация при 298.15 К и идеальный двухатомный газ при давлении 1 бар при любой температуре. Выбор последнего имеет ряд преимуществ: активность двухатомного газа легко измеряется с помощью нижеизложенного метода; это позволяет определить стандартные уравнения, остающиеся неизменными в точках плавления и кипения серы. [1]

Длительное время описанный метод использовался в металлургических исследованиях [2] через некоторое время его стали использовать при изучении сульфидов [3]. Электрохимическая ячейка, по Шнеебергу, может быть представлена в следующем виде (1):

 $Ag_{(\text{tb.})}|AgI_{(\text{tb.})}|Ag_2S_{(\text{tb.})},\,S_{2(\text{fag}).}$

(1)

Её действие вызывает миграцию иона серебра в виртуальной реакции (2):

$$2Ag_{(TB.)} + \frac{1}{2}S_{2(\Gamma a3)} = Ag_2S$$
(2)

В работе [3] показано, что активность серы может быть рассчитана из данного выражения:

 $\ln a_{s_2} = (E - E^0) \frac{4F}{RT} + \ln a_{s_2},$ (3)
где *E* – измеренная ЭДС, *E*⁰ – ЭДС ячейки кривой конденсации серы при температуре T, *F* – постоянная Фарадея.

Шнееберг установил, что, приняв F = 23.061 ккал/вольт-экв., R = 1.9873 кал/град×моль и учитывая данные его собственных измерений E^0 , описанную выше ячейку можно использовать для расчёта a_{s_2} :

$$\ln a_{s_2} = \frac{1}{T} (20158.6E - 9099.7 \pm 103.2) + 3.73 \pm 0.034$$

$$Ag \cdot snekmpod Keapueeas eama uppekceeas ama uppekceeas ama$$

Рисунок 1. Схема Ag|AgI|Ag_{2+x}S ячейки для измерения *a*_s-сульфидных ассоциаций [3]

Рисунок 2. Диаграмма a_{s2} – температура (в милливольтах) и предел применимости ячейки(1). [1]

На рисунке 2 показана область применения ячейки: низкотемпературным пределом является превращение акантит – аргентит (Ag₂S-I/Ag₂S-II) при 176 °C, а высокотемпературным – появление электронной проводимости в электролите AgI, что происходит примерно при 450 °C. [1]

Экспериментальная часть

Целью данной работы является получение термодинамических параметров для минерала добреелита. Для этого необходимо изготовление измеряемой смеси FeS₂+Cr₂S₃+FeCr₂S₄, сборка электрохимической ячейки и измерение ЭДС.

Синтез компонентов смеси

1) Синтез добреелита FeCr₂S₄

Был получен искусственный аналог минерала добреелита, однако рентгенофазовый анализ установил большое количество примесей в системе. Поэтому был проведён повторный синтез, результат которого был удовлетворителен (Рисунок 3).

Рисунок 3. Дифрактограмма FeCr₂S₄

Реакция образования добреелита выглядит следующим образом (4):

 $FeS + 2CrS + S = FeCr_2S_4$

(4)

Сульфид хрома CrS получали методом пиросинтеза. При пиросинтезе между компонентами исходной шихты происходит взаимодействие в достаточно узкой волне горения (0.1-5 мм), распространяющейся с высокой скоростью по шихте (0.1-15 см/с). В связи с этим неоднородность шихты приводит к неоднородности конечного продукта, поэтому чистые вещества необходимо тщательно перетирать в ступе. [4] Затем ампулу запаивали, вакуумировали и помещали в печь.

При температуре около 700 °C в пламени кислородной горелки происходит взаимодействие хрома и серы. Далее образец снова измельчали и отжигали в горизонтальной печи сопротивления при разных температурах: 650 °C, 550 °C и 500 °C с периодическими проверками рентгенофазовым анализом (Рисунок 4). В общей сложности, отжиг данного вещества занял 3 месяца.

Рисунок 4. Дифрактограмма CrS

Троилит FeS был получен сухим синтезом из элементов при температуре 700 °С и длительности отжига 12 сут. Состав троилита также подтверждали рентгенофазовым анализом (Рисунок 5).

Рисунок 5. Дифрактограмма FeS

2) Синтез пирита FeS₂

Для изготовления пирита FeS₂ брали приготовленный ранее троилит FeS и осуществляли реакцию:

$$FeS + S = FeS_2 \tag{5}$$

3) Синтез сульфида хрома Cr₂S₃

Данное вещество было получено из простых веществ в результате реакции:

$$2Cr + 3S = Cr_2S_3$$

Сера была взята с избытком (m = 0.01 g). Образец отжигался при температуре 400°С в течение 6 сут. Затем образец достали и наблюдали на противоположном от вещества конце ампулы серу, выделившуюся во время отжига. Для установления равновесия массу выделившейся серы в чистом виде добавили в перетёртый образец, после чего отжиг был продолжен с последовательным увеличением температуры до 600°С. В целом, длительность отжига данного вещества составила 3 месяца. Затем вещество проверяли рентгенофазовым анализом (Рисунок 6).

Рисунок 6. Дифрактограмма Cr₂S₃

(6)

Результат

Итак, компоненты смеси были запаяны в вакуумированную кварцевую ампулу и помещены в печь, где при температуре 450 °C был осуществлён их отжиг в течение 28 суток. Рентгенофазовый анализ (Рисунок 7) показал наличие в системе следующих фаз: FeS₂ + Cr₂S₃ + FeCr₂S₄. Доказано равновесное существования, что позволяет перейти к следующему этапу работы.

Рисунок 7. Дифрактограмма смеси FeS2+Cr2S3+FeCr2S4

Устройство электрохимической ячейки

Реакция равновесия выглядит следующим образом:

$$FeS_2 + Cr_2S_3 = FeCr_2S_4 + 1/2S_2$$

А реакция с на отрицательном электроде:

$$2Ag + 1/2S_2 = Ag_2S$$
(8)

Суммарным потенциалобразующим процессом, соответственно, будет реакция (9):

$$FeCr_2S_4 + Ag_2S = FeS_2 + Cr_2S_3 + 2Ag$$

Данная реакция была реализована в твердотельной ячейке с Ag⁺ проводящим твёрдым электролитом AgI:

(-)
$$Pt | Ag | AgI | Ag_2S, Pt || Cr_2S_3, FeS_2, FeCr_2S_4 (+)$$
 (A)

Сборку ячейки осуществляли, опираясь на описанный в теоретическом обосновании метод Шнееберга [3], однако ключевое отличие состояло в следующем: платиновую проволоку с припаянным на конце серебряным шариком скручивали в спираль и помещали на дно прессформы. Сверху засыпали тонкий порошок AgI и спрессовывали в таблетку. Далее конец платиновой проволоки аккуратно отделяли от электролита. Данные действия необходимы для того, чтобы он в процессе работы не разрушился под действием высоких температур.

Измерение температурной зависимости ЭДС

Ячейка нагревалась в вертикальных печах сопротивления. Температура внутри печей поддерживалась с помощью прецизионного терморегулятора. Значения температуры и ЭДС

(7)

(9)

считывались автоматически микропроцессорной мультиканальной измерительной системой [5], соединенной с компьютером.

Результатом эксперимента является зависимость ЭДС от температуры.

Таблица 1. Значения температур и ЭДС ячейки (А)

<i>T</i> /K	<i>E</i> /mV	ΔE^{*}	
143,95	172,2	13,11601	
154,66	172,8	13,20085	
167,13	173,4	13,20105	
186,45	174,1	12,97176	
197,05	174,9	13,2619	
(D* D	Б		

 $\Delta E^* = E_{measured} - E_{calculated}$

Рисунок 8. Температурная зависимость ЭДС ячейки (А)

Расчёт термодинамических функций

На следующем этапе рассчитывались энергия Гиббса, энтропия и энтальпия реакции из температурной зависимости ЭДС с помощью основных уравнений термодинамики:

 $\Delta_{\rm r} G \ (Дж \times {\rm моль}^{-1}) = - n F E \cdot 10^{-3};$

 $\Delta_r S (Дж \times моль (1 \times K)) = -nF 10^{-3} (\partial E/\partial T)_p;$

 $\Delta_{\rm r}$ H (Дж × моль ⁻¹) = – nF·10⁻³·[$E - (\partial E / \partial T)_{\rm p}$ T],

где n=2 – количество электронов, участвующих в электрохимическом процессе, $F = 96484.56 \text{ Кл} \cdot \text{моль}^{-1}$ – константа Фарадея, и E - ЭДС ячейки, мВ.

 $\Delta_{\rm r} G(7) \ _{(298.15\mathrm{K})} = -34.667 \ \mathrm{K} \square \mathrm{K} \cdot \mathrm{Mong}^{-1} \tag{10}$

 $\Delta_{\mathbf{r}} \mathbf{S}(7) (298.15 \mathrm{K}) = -9.802 \ \mathrm{Д} \mathbf{x} \cdot \mathbf{MO} \mathrm{J} \mathbf{b}^{-1} \cdot \mathrm{K}^{-1}$ (11)

 $\Delta_r H(7)$ (298.15К) = -31.743 кДж · моль ⁻¹

Для дальнейшего расчёта основных термодинамических функций фазы FeCr₂S₄ были проанализированы литературные данные:

Таблица 2. Стандартные термодинамические функции элементов и соединений для реакции (7) при *T* = 298.15 К и *p* = 1 бар (105 Па)

Фаза	$\Delta_{\mathrm{f}}\mathrm{G}^{\mathrm{o}}$, кДж·моль -1	S°, Дж·моль ⁻¹ ·К ⁻¹	$\Delta_{\rm f} { m H}^{\rm o}$, кДж·моль ⁻¹	Источник
FeS ₂	-160.076	52.928	-171.544	[6]
$S_{2\Gamma}$	79.688	228.1 65	128.6	
Cr ₂ S ₃	- 460.449 [*]	117.898	-468.02	[7]
		149 ± 17	-335 ± 63	[8]
		104.873	-476.14	[7]
			-480.2 ± 1.6	[9]

[*] – рассчитано из [7]

Далее определяется энергия Гиббса, энтальпия и энтропия для FeCr₂S₄ при помощи справочных данных и полученных значений термохимических параметров реакции из уравнений (10) – (12):

(12)

$$\begin{split} &\Delta_{f}G^{o}(FeCr_{2}S_{4})=-\Delta rG(7)+\Delta fG^{o}(Cr_{2}S_{3})+\Delta fG^{o}(FeS_{2})-1/2\Delta fG^{o}(S_{2r})=-550.967\ \text{kJm}\cdot\text{mod}^{-1}\\ &\Delta_{f}S^{o}(FeCr_{2}S_{4})=-\Delta rS(7)+\Delta fS^{o}(Cr_{2}S_{3})+\Delta fS^{o}(FeS_{2})-1/2\Delta fS^{o}(S_{2r})=47.024\ \text{Jm}\cdot\text{mod}^{-1}\cdot\text{K}^{-1}\\ &\Delta_{f}H^{o}(FeCr_{2}S_{4})=-\Delta rH(7)+\Delta fH^{o}(Cr_{2}S_{3})+\Delta fH^{o}(FeS_{2})-1/2\Delta fH^{o}(S_{2r})=-735.607\ \text{kJm}\cdot\text{mod}^{-1}\end{split}$$

Заключение

В ходе данной работы был проведён синтез образца состава $FeCr_2S_4 + Cr_2S_3 + FeS$, измерена температурная зависимость ЭДС и предварительно рассчитаны термодинамические параметры добреелита $FeCr_2S_4$.

Библиографический список

- 1. Воган Д. Д. и др. Химия сульфидных минералов. Мир, 1981.
- 2. Kiukkola K., Wagner C. Galvanic cells for the determination of the standard molar free energy of formation of metal halides, oxides, and sulfides at elevated temperatures //Journal of the electrochemical society. 1957. T. 104. № 5. C. 308-316.
- 3. Schneeberg E. P. Sulfur Fugacity Measurements with the Electrochemical Cell AgAgIAg (sub 2+x) S, fs //Economic Geology. 1973. T. 68. №. 4. C. 507-517.
- Амосов А. П., Боровинская И. П., Мержанов А. Г. Порошковая технология самораспространяющегося высокотемпературного синтеза материалов. – Машиностроение-1, 2007.
- Жданов Н. Н., Осадчий Е. Г., Зотов А. В. Универсальная измерительная система для электрохимических измерений в гидротермальных и конденсированных средах //Сборник материалов XV Российского Совещания по Экспериментальной Минералогии. Сыктывкар: Изд-во "Геопринт. – 2005. – С. 166-168.
- 6. Ihsan B. Thermochemical data of pure substances //and. 1995. T. 934. C. 587.
- 7. Waldner P. Thermodynamic Modeling of the Cr-Fe-S System //Metallurgical and Materials Transactions A. 2014. T. 45. №. 2. C. 798-814.
- 8. Mills K. C. Thermodynamic data for inorganic sulphides, selenides and tellurides. 1974.
- Stolyarova T. A. Thermochemistry of chromium sulfides //Geochemistry International. 2003. T. 41. – №. 11. – C. 1134-1136.